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Prediction of peptide secondary structueehelix, B-sheet,
31o-helix, etc.)a priori from amino acid sequence is a primary
goal of de nao protein design and protein folding studfes.
Relative to theoa-helix and $-sheet, the factors favoring
formation of the 3¢-helix (i, i + 3 hydrogen bonding; constitut-
ing ~10% of protein structuf@ are only beginning to be
understood. Herein, we report isomeric decapeptides Pi-10 and
Ipi-10, putative amphipathic- and 3¢-helices (Figure 1), which
exhibit their designed secondary structure in aqueous SDS
micelles (Figure 2, panel A). In organi@queous solvent
mixtures, Pi-10 exhibits the expecteshelix to coil transition
as water content is increasedB0%; Figure 2, panel B; Table
1) while Ipi-10 converts from a;3-helical toa-helical and coil
structure as water content is increased%0%; Figure 2, panel
C; Table 1). These results show that amphipathy is a design
tool for both a-helical and 3¢-helical structures, even in very
short peptides rich i, a-disubstituted amino acidst¢AAS).
Additionally, the amphipathic design is primary in controlling

secondary structure, overriding other factors such as the number

of aaAA residued and the order ofi-amino acids andoAAs
in the sequencewhich are often thought to be key in controlling
the 3¢a-helix equilibrium. We have been able to confirm
experimentally what had previously been calculdtei. that
at least some peptides rich maAAs are more stable as
3io-helices in organic solvents than in aqueous environments.
The 3d/o-helix equilibrium is being intensely studied
because the ;3-helix is a likely protein folding intermediate
to the a-helix conformation. In addition, short stretches of
3;0-helix occur frequently in globular proteidsand protein
recognition steps may involve facile transitions between the
o-helix and 3¢-helix.” Experiments probing the;da-helix
equilibrium have focused almost exclusively on short hydro-
phobic peptides composed of sevesab-disubstituted amino
acids (toAAs), such as oligomers af-aminoisobutyric acid
(Aib, Figure 1A)8 Studies of these peptides have been limited
to spectroscopic measurements in organic solvents [e.g.,
trifluoroethanol (TFE), acetonitrile (G4€N), dimethyl sulfox-
ide, methanol, etc.] or X-ray structure determinations of peptides
crystallized from organic solvents.
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Figure 1. (A) Structure of a-aminoisobutyric acid (Aib) and
4-aminopiperidine-4-carboxylic acid (Api) residues. (B) Téne and
3io-helical wheel diagrams and sequences for Pi-10 and Ipi-10 peptides.
Pi-10 can be perfectly amphipathic as @helix (left side of figure,
underlined); the alternative;@helix is not amphipathic. Ipi-10 can be
perfectly amphipathic as aghelix (right side of figure, underlined);

the alternativeo-helix is poorly amphipathic with hydrophobic Aib
residues interrupting the hydrophilic face.
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Figure 2. CD spectra of 0.2 mM peptide: panel A, Pi-1®, and

Ipi-10, @; in buffered SDS (25 mM) micelles; panel B, Pi-10 in 1:1

CH;CN—H0, 4, 9:1 CH,CN—H,0, ¢, and 9:1 CHCN—-TFE,®; and

panel C, Ipi-10 in 1:1 CECN—H0, a, 9:1 CHCN—H,0, ¢, and 9:1

CH;CN—TFE, B.

Peptides Pi-10 and Ipi-10 contain twelLys residues and 8
achiralaoAAs — six Aib residues and two 4-aminopiperidine-
4-carboxylic acid® (Api, Figure 1A) residues. The-Lys
residues are included to induce a right-handed helix (detectable
by CD) and are well separated and near the middle of the
sequences to have maximal effecthe lysine-likea ol AA Api
can be incorporated readily into Pi-10 and Ipi-10 by solid-phase
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Table 1. Circular Dichroism Data and Derived Structural Parameters

Communications to the Editor

for Peptides Pi-10 and Ipi-10

Pi-10 Ipi-10
solvent |7J P [6]n—m®C Rd o-helicity (%) [6] P [6]n—m®C Re 3io-helicity (%)
25 mM SDS —11860 —9605 0.81 32 —5316 —1750 0.32 25
9:1 CHCN—TFE —14647 —10299 0.72 34 —9916 —3145 0.33 45
9:1 CHCN—H0 —7382 —4785 0.65 16 —6740 —3605 0.54 g
1:1 CHCN—HO —3818 —1899 0.50 6 —4204 —3118 0.74 h

aUnits for [0] are deg cridmol. ® The minimum for the §].—.~ band is observed in the range from 2@0D9 nm.c The minimum for the

[6]n— band is observed in the range from 222 to 225 AR = [0]n—/[0],

. ¢ Thea-helical content was calculated according to ref ‘Tehe

amount of 3g-helix present was estimated according to the equation in ref This peptide is likely a mixture od-helical, 3¢-helical, and coil
structures. According to ref 15, ¥-helix is estimated at 12%; according to ref 16, %-3elix is estimated at 31%8.This peptide isx-helical as
indicated byR = 0.74 and has-10% a-helix according to the equation in ref 15.

method$? and acts as a helix-promoting, water-solubilizing, and

In the aqueous/organic solvent mixtures (9:1;CN—TFE 20

amphipathic design element in the peptide sequences. Thed:1 CH;CN—H,O, 1:1 CHCN—-H;0), Pi-10 behaves as a
peptides are designed to form amphipathic helices (see Figurenormala-helical peptide, exhibiting a clear cooperative helix/

1B) with charged Lys and Api residues forming a hydrophilic
face and nonpolar Aib residues forming a hydrophobic face.
Pi-10 is designed to form an amphipathichelix and Ipi-10 is
designed to form an amphipathigodhelix; both peptides are
less amphipathic in the alternative helical forms (Figure 1B).

Negative CD bands at222 nm (n>xz") and ~207 nm
(m—x") are diagnostic of helical peptide structures. The ratio
R of the intensity of these bands, whdRe= [0]n—+/[0] z—=*,
has been used as a parameter to distingai$ielical and 3¢
helical secondary structureR ~ 1 for a-helix, R < 0.4 for
3i0-helix12714 Table 1 shows the CD minima, percemthe-
licity, and R for Pi-10 and Ipi-10 in SDS micelles and in
agueous-organic solvents. Treatment of Pi-10 peptide with
SDS (25 mM) micelles induces transition to a typicahelix
CD spectrum wittR = 0.81 and percert-helix = 32%1° The
CD spectrum of Ipi-10 in the presence of SDS micelles has an
R = 0.32 indicating a g-helical structure. Theig-helicity of
Ipi-10 is estimated at 25%96:17 Additionally, the positive CD
band centered near 195 nm is much weaker for Ipi-10 than for
the a-helical Pi-10, which has been noted in other studies of
3ic-helical peptide®4 and is predicted by theoRf. The
relatively low absolute helicities for both Pi-10 and Ipi-10 can
be accounted for in part by helix end efféétand by incomplete
micelle bindingt®.11b

CD spectra of Pi-10 and Ipi-10 were taken in organic/
agueous solvent mixtures (Figure 2, panels B and C; Table 1).
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as is available fon-helix andf-sheet. Also, theoretical calculations (ref
12) suggest that the absolute intensity of CD bands,gh8lical peptides
will be highly dependent on the and 1 torsion angles in the peptide
backbone. It is known thatighelical aaAA-containing peptides have
different¢ andy angles than @-helical peptides having only proteinogenic
amino acids (see refs 4, 9, and 12). In light of this, the peptidecAtel/al)-
OtBu, recently prepared and studied by Toniolo and co-workérsay be
a better 3r-helical model for Ipi-10. Assuming AaMeVal)s-OtBu is 100%
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coil transition. An isodichroic point appears at 201 nm and
helicity decreases with decreasing organic solvent composition.
The shift of thea-helix/coil equilibrium toward helix as organic
composition increases agrees with what is known for monomeric
a-helices! However, as Pi-10 contains 808@AAs and has
no two a-amino acids together, both Karle and Balafaand
Kuki® would have predicted this sequence to helg&lical.
According to calculations, Pi-10 should have been increasingly
3io-helical as organic solvent content increa&edhus, am-
phipathic design is more important than the mere percentage
of aaAAs or order of a-amino acids andxoAAs in the
sequence. In contrast, Ipi-10 displays strongtglical char-
acter in 9:1 CHCN-TFE R = 0.32; 45% 3y-helicity) and
exhibits a conversion to am-helical and coil structure in 9:1
CH3CN—H,0 and 1:1 CHCN—H>0. The lack of an isodich-
roic point in this series of CD spectra suggests a non-cooperative
transition indicative of multiple equilibria such agedelix/
o-helix, 31g-helix/coil, anda-helix/coil. These results support
predictions that in peptides in which agBx-helix equilibrium
exists, increasing polarity of the solvent will faveorhelix
formation® Similar trends have been noted in our studies of
the N-terminal acetylated peptides, Pi-10-ac and Ipi-10-ac (see
Supporting Information).

This work shows that amphipathic design is an effective way
to influence the balance ofighelical anda-helical structure
in a peptide and that significanighelicity can be achieved in
aqueous milieu. Utilization of the positively chargead AA
Api as a helix-promoting, amphipathic design element in Pi-10
and Ipi-10 was key to these findings. We are currently exploring
other structural features such as self-aggregation and salt bridg-
ing to stabilize 3¢-helices in water to gain further experimental
insights into factors controlling the;@a-helix equilibrium.
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